Power Management for Portable Audio Applications

O. Trescases¹, G. Wei¹, A. Prodic¹, W. T. Ng¹, K. Takasuka², H. Nishio³

¹ University of Toronto, Canada
Electrical & Computer Engineering
10 King’s College Road
Toronto Ontario
Canada M5S 3G4
Tel: (416) 978-6249
e-mail: ngwt@vrg.utoronto.ca

² Asahi Kasei Microsystems, Japan

³ Fuji Electric Advanced Technology, Japan
Outline

- Power Management for Portable Applications
- Self-Optimization in DC-DC Converters
- Optimized Efficiency Through SOS
- Application of Predictive Feedforward: Miniature Class-D Audio Amplifier
- Conclusions
Traditional Power Management (e.g. ACPI) is basically a **one-way** decision.
Power Management for Portable Applications

- The load must be able to **communicate** to the power supply and optimize power use.
Target Application: Handheld Devices

- DC-DC converter provides a regulated bus voltage for digitally fed predictable load
- In general, the digitally fed load may be a speaker, display, ICs etc.
- Goal: on-the-fly optimization of DC-DC converter performance
- $2.6 \, \text{V} < V_{\text{batt}} < 4.2 \, \text{V}$ (single cell lithium Ion)
- $I_{\text{batt}} < 1 \, \text{A}$

![Diagram of Power Management System]

- Battery
- DC-DC
- Digital Signal Source
- DSP/DAC
- Amp
- Load
- Digitally Fed Load
- v_{bus}
- i_{bus}
- Z_{L}
Self-Optimization in DC-DC Converters

There exists numerous digital/analog schemes for on-line optimization of:

- Efficiency: R_{on}, Q_{gate}, dead-time, multi-mode (PFM, DCM etc.)
- Dynamic response: compensator coefficients, auto-tuning etc.

How is it achieved in current technology?
Self-Optimization in DC-DC Converters

- There exists numerous digital/analog schemes for on-line optimization of:
 - Efficiency: R_{on}, Q_{gate}, dead-time, multi-mode (PFM, DCM etc.)
 - Dynamic response: compensator coefficients, auto-tuning etc.
- How is it achieved in current technology?
Self-Optimization in DC-DC Converters

There exists numerous digital/analog schemes for on-line optimization of:

- Efficiency: R_{on}, Q_{gate}, dead-time, multi-mode (PFM, DCM etc.)
- Dynamic response: compensator coefficients, auto-tuning etc.

How is it achieved in current technology?
Self-Optimization in DC-DC Converters

- There exists numerous digital/analog schemes for on-line optimization of:
 - Efficiency: R_{on}, Q_{gate}, dead-time, multi-mode (PFM, DCM etc.)
 - Dynamic response: compensator coefficients, auto-tuning etc.
- How is it achieved in current technology?
This Work: Load Prediction Concept

- Premise: *digitally fed load has predictable load impedance*
- Sensor-less approach:
 - Data stream is used to optimize DC-DC converter efficiency in real-time
Optimized Efficiency Through SOS

- Optimum gate width varies with load power:

\[W_{opt} \propto \frac{P_{out}}{\sqrt{f_s}} \]

\[P_{gate} = f_s \left(C_{gate,N} V_{in}^2 + C_{gate,P} V_{in}^2 \right) \]

\[P_{cond} = \left(I_{out}^2 + \frac{\Delta i_L^2}{12} \right) \left(D R_{ds,P} + D' R_{ds,N} \right) \]

\[\eta \]

\[W_1 < W_2 < W_3 \]

\[C_{gate} \text{ vs. } R_{ds} \]

Log (I_{out})
SOS Implementation

- “Switched-W” concept can be expanded to multi-gate binary-weighted (segmented) output stage:

- Active area is identical to traditional output stage
Trade-off Between R_{on} and P_{gate}

- When changing from $[111]$ to $[001]$:
 - P_{gate} is reduced by $6.3 \times$
 - $R_{on,N}$ increased by $2.4 \times$, $R_{on,P}$ increased by $3.1 \times$
Efficiency Measurements @ 4 MHz, $V_{in} = 2.7$ V

- Peak efficiency at 4 MHz is limited by high switching losses in the output stage + inductor conduction losses ($> 90\%$ @ 2 MHz)

![Graph showing efficiency measurements](image-url)
Application of Predictive Feedforward: Miniature Class-D Audio Amplifier
All-Digital Hi-Fi Open Loop Class-D Amplifier

- Why class-D? Efficiency, Size, Cost
- Operates as a high-bandwidth *open-loop* DC-DC converter with variable V_{out}
- Open-loop class-D amplifier:
 - All digital
 - Well suited to digital audio sources
- Local feedback may be added to suppress distortion due to output stage non-idealities

![Diagram of All-Digital Hi-Fi Open Loop Class-D Amplifier](attachment:diagram.png)

- **PCM Data**
 - ~ 24-bits
 - 44.1 kHz

- **FIR Oversampling**
 - ~ 4x-16x
 - ~ 4th-10th order

- **ΔΣ Modulator**
 - ~ 8-10 bits
 - 100-500 kHz

- **DPWM**

- **Class-D Output Stage**
 - V_{bus}
 - $V_{bus}/2$
 - 4-16 Ω

University of Toronto
All-Digital Hi-Fi Open Loop Class-D Amplifier

- H-bridge class-D amp is preferred
 - Improve PSRR
 - Eliminate need for negative rail or AC coupling cap

\[
P_{\text{max}} = \frac{4V_{\text{bus}}^2}{R}
\]
All-Digital Hi-Fi Open Loop Class-D Amplifier

- H-bridge class-D amp is preferred
 - Improve PSRR
 - Eliminate need for negative rail or AC coupling cap

\[P_{\text{max}} = \frac{4V_{\text{bus}}^2}{R} \]
Estimating The Class-D Amplifier Load Current

- Class-D input current is proportional to output power (non-linear):

\[P_{out} = \frac{i_{spk}(t)v_{spk}(t)}{V_{bus}\eta} = \frac{I_{spk}V_{spk}}{2V_{bus}\eta} (\cos \phi - \cos(2\omega t + \phi)) \]

- Crude resistive speaker approximation:

\[i_{bus}(t) = \frac{V_{spk}^2(t)}{V_{bus}\eta R} \propto V_{spk}^2(t) \propto s[m]^2(t) \]

Component at 2f

Speaker voltage can be obtained directly from audio data stream!
DC-DC Converter + Class-D Amplifier

- Prototype system includes 2 custom ICs + off-the-shelf parts
DC-DC Converter + Class-D Amplifier

- Prototype system includes 2 custom ICs + off-the-shelf parts
DC-DC Converter + Class-D Amplifier

- Prototype system includes 2 custom ICs + off-the-shelf parts

![Diagram of DC-DC Converter + Class-D Amplifier]

- Battery voltage range: 2.7V - 4.2V
- Segment Controller
- Digitally Controlled DC-DC Converter
 - $f_s1 = 4$ MHz
- Digital Fed Load
- Gate Driver
- Class-D Output Stage
- 8x FIR Oversampling
- Modulator
- PLL
- DPWM & Dead-Time
- $f_s2 = 44.1$ kHz
- $8f_s2 = 352.8$ kHz
Segment Controller

- Segment controller estimates class-D load current as a resistive approximation.
- Enable code is calculated each audio sample \(f_{s1} = 44.1 \text{ kHz} \).
- Hysteretic thresholds are encoded into a lookup table.
- Enable codes are calculated and transmitted asynchronously to the buck converter.

\[
i_{bus}(t) = \frac{V_{spk}^2(t)}{V_{bus}\eta R} \propto V_{spk}^2(t) \propto s[m]^2(t)
\]
Digitally Controlled Buck Converter

- Simple digital LUT-PID based compensator is used with $f_{s2} = 4$ MHz
- Output stage is re-configured according to data from segment selector

Diagram of Digitally Controlled DC-DC Converter.
Experimental Results

- High speed flash D/A is used to compare predicted bus current $i_{pd}[n]$ with actual bus current $i_{bus}(t)$ during audio playback.
Experimental Results

- Good agreement between the predicted and actual bus current is achieved despite the complex speaker impedance.
Experimental Results

- Output stage is dynamically re-sized according to predicted speaker current.

Speaker Voltage:
- Predicted Current:
- Segment Codes:

![Graph showing predicted current and segment codes](image)

- PFM Mode
- Dynamic Optimization

University of Toronto
PFM → PWM Operation

- Output stage is dynamically re-sized according to predicted speaker current

Predicted Current:

Bus Voltage (AC):

Segment Codes:

ch1: $i_{pd}[m]$

ch2: $v_{out}(t)$

PFM Mode ↔ PWM Mode
PWM → PFM Operation

- Output stage is dynamically re-sized according to predicted speaker current

Predicted Current:

Bus Voltage (AC):

Segment Codes:

![Graph showing PWM and PFM Modes](image)

- **PWM Mode** ↔ **PFM Mode**

Total Energy Consumption Comparison

- The energy savings is highly dependent on the power distribution of the music sample
- For a given dynamic range, the power savings depends on the amount of time spent in each power bin
 - Rock music has the lowest energy savings (most time spent with seg = ‘111’)
 - Jazz music has the highest energy savings

<table>
<thead>
<tr>
<th>Song Type</th>
<th>Length (s)</th>
<th>Total Energy Consumption (J) @ V_{batt} = 3.6 V</th>
<th>Energy Savings (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rock</td>
<td>149</td>
<td>11.16 (PWM Mode, All segments ON) 8.80 (Automatic Segment / Mode Control)</td>
<td>21.15</td>
</tr>
<tr>
<td>2. Classical</td>
<td>380</td>
<td>23.77 7.08</td>
<td>27.70</td>
</tr>
<tr>
<td>3. Jazz</td>
<td>140</td>
<td>11.16 8.80 17.18 4.36</td>
<td>38.32</td>
</tr>
</tbody>
</table>
Segment Distribution

- # of samples for each segment code can be determined through audio post-processing

- Audio sample:
Conclusion and On-going Work

- Demonstrated a feed-forward concept to improve energy efficiency in portable applications
- Experimental results reported for a miniature Class-D amplifier
- Maximum of 38 % in total energy savings was achieved
- Energy savings depends on dynamic content of music
- Effect on distortion?